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Abstract—Aiming at providing various services for daily 
living, a framework of Intelligent Service Environment of 
Ubiquitous Robotics (ISEUR) is presented. This framework 
mainly addresses two important issues. First, it builds 
standardized component models for heterogeneous sensing 
and acting devices based on the middleware technology. 
Second, it implements a general purpose task planner, which 
coordinates associated components to achieve various tasks. 
The video demonstrates how these two functionalities are 
combined together in order to provide services in intelligent 
environments. Two different tasks, a localization task and a 
robopub task, are implemented to show the feasibility, 
efficiency and expandability of the system.  

Keywords—intelligent service environment; middleware; 
task planning;  

I.  INTRODUCTION  
Aiming at providing various services for daily living, 

there are increasing efforts on combining the robotic 
research with the ambient intelligence research. One 
consequent field is the ubiquitous robotics [1][2]. In 
ubiquitous robotic systems, sensors and actuators are 
distributed as equivalent modules in the environments, 
where these modules are able to communicate and 
cooperate with each other through the network. Compared 
to the traditional monolithic robot, the ubiquitous sensing 
and acting network enables the system to complete more 
complex service tasks, as well as decreases the 
development expense.  

In the video, we demonstrate a system, taking 
advantages of heterogeneous networked sensors and 
actuators in the environment, and providing services 
following user’s commands. This system is based on 
ISEUR framework. One of the most notable features of 
this framework is that it combines Robot Technology 
Middleware (RTM) with a general purpose task planner. 
Not only does the middleware enable the communication 
and interoperation between each pair of the devices, but it 
also provides standardized interfaces to the up-level 
planner, which is able to resolve various tasks in different 
domains. The video demonstrates this system with two 
different domains, the localization domain and the robopub 
domain. It is shown that this framework enables easy 
extension of new devices as well as the easy transition to 
new task domains.  

II. SYSTEM OVERVIEW 
The ISEUR framework mainly addresses two issues. 

First, the distributed robotic devices may be highly 
heterogeneous both with regard to hardware platform and 
software implementation. It is infeasible for these devices 
to communicate and collaborate with each other. As a 
result, the first problem is how to integrate these large 
amounts of heterogeneous devices and allow painless 
modification, expansion and deletion. Besides, there are a 
variety of tasks and different situations for each task in the 
day-to-day service scenarios. Users’ commands are usually 
vague and complex, such as ‘give me a cup of water’, 
‘clean the room’, etc., which need further decomposition 
and organization before being understood and executed by 
the system. So the second problem is how to plan on these 
complex problems in optimization of time and resource 
consumption.   

 

Fig. 1. The system framework of ISURE 

According to these issues, the proposed framework is 
composed of three layers. They are the device layer, the 
service layer and the application layer, as Fig. 1 shows.  

In the device layer, a middleware technology is 
introduced into the system. It encapsulates heterogeneous 
robotic devices into uniform standardized components. 
The components communicate with each other through 
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uniform standardized ports. This also brings benefits to the 
easy modification of existing devices and the expansion of 
new ones. It will be detailed in Section 3.  

The service layer contains a device manager and a 
general purpose task planner. Device manager is 
responsible for transferring up-level tasks and monitoring 
low-level status. The task planner turns users’ abstract 
commands into sub-task sequences, which can be directly 
carried out by corresponding components. We will further 
describe this in Section 4. 

The application layer provides the interaction between 
human and the ISURE system. Two kinds of user 
interfaces are implemented. One is a web interface that can 
be accessed from remote computers or mobile phones. The 
other is a humanoid robot that acts as a communication 
interface with both vocal and body languages. 

III. MIDDLEWARE-BASED DEVICE LAYER 
As mentioned above, the distributed devices are highly 

heterogeneous with respect to platforms such as operating 
system, programming language and communication media. 
Thus the middleware is employed to generalize the devices 
into uniform standardized components, which enables the 
dynamic communication and cooperation between any two 
of the modules. Fig. 2 explains how the middleware 
transparentizes the hardware and software platforms, and 
offers standardized access to the robotic devices.  

 
Fig. 2. Conceptual Model of Middleware 

Many research efforts have been expended on the 
middleware technology for heterogeneous robotics system 
[3], such as Player [4], Lime [5], Miro [6], RTM [7] and 
etc. We argue that the middleware technology needs to 
have the capacity to provide not only the communication 
model but also the interfaces for managing component 
states. With this in mind, a distributed localization system 
using RTM is proposed. We implement our system based 
on RTM owing to its two functionalities.  

• The Data Ports and Service Ports for data exchange 
and service invoking.  

• Component execution context for lifecycle 
management.  

The ports are categorized into data ports and service 
ports. The data port is responsible for the continuous 
exchange of data, while the service port provides the 
command based communication. Each component can 
have any number of data InPorts and OutPorts. A data 
OutPort sends the data to a corresponding InPort which 
receives the data. The component with a service port, 
offering a set of services, listens for requests upon those 
services via a connector. Fig. 3 depicts the simplified UML 
model of the RT-component. 

 

Fig. 3. Simplified UML component model 

Based on that component model, Fig. 4 illustrates some 
of the components in our system. Each component is 
responsible for some specific functionality. For instance, 
the environmental camera is responsible for robot 
localization and object recognition tasks; the mobile table 
is in charge of transportation. Furthermore, the 
decentralized modules are able to collaborate through 
flexible combination, which increases the reusability of the 
components. For example, the environmental camera can 
provide localization information for multiple robots; the 
path planning module can also serve for multiple mobile 
platforms.  

 

Fig. 4. Some of the components for the experiments of this study. 
The distributed components are in the uniformed structure using 
middlware technology.  

Each component has three service ports, namely 
FuncGet, FuncSet and ExeStatusGet. These service ports 
are responsible for the interaction with the upper layer. 
FuncGet port reports to the service layer about the 
components’ state. For example, the environmental camera 
provides the index of current robots within the field of 
vision; the mobile table feeds back its coordinates, etc. 
FuncSet port provides the functionality invoking, such as 
setting the target location for the mobile table, setting the 
localizing target for the environmental camera, etc. 
ExeStatusGet port returns the execution status, such as 
whether the mobile table has reached its destination, or 
whether the environmental camera is locking on its target.  

The data ports allow the communication and 
cooperation between components. For instance, the 
localization information is transferred from the data out-
port of environmental camera to the data in-port of the path 
planning component. Once two data ports are connected, 
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those two components are able to perform real time 
communication to accomplish the task collaboratively. 

IV. TASK PLANNING MODULE IN THE SERVICE LAYER 
The task planning module is a crucial part in the 

service layer. In ISURE, the tasks are complicated and the 
situations are dynamic. It is unlikely to predefine all the 
possible states. As a result, a flexible and robust planning 
method is needed. What’s more, it is supposed to be a 
domain-independent general approach for solving a variety 
of problems. 

A. Task Modeling 
Task modeling is the precondition of the task planning. 

The quality of the planning result greatly depends on the 
expressivity of the task model. On the other hand, the more 
complicated of the model, the more difficult for the 
planner to solve the problem.  

This paper follows the techniques in automated 
planning field. The Task planning problem is modeled as a 
state transition system. Formally, it is modeled as a five-
tuple ( , , , , )S A c I G∏ = , where: 

• 1 2{ , , }S s s= is a finite set of world states; 
• 1 2{ , , }A a a= is a finite set of actions, each a A∈  

is a triple ( , , )a a aname pre eff  referred to the 
action’s name, parameters, precondition and 
effects respectively. The action’s name includes 
the parameters associated with the action. 

• 0:c A +  is the cost function;  
• I S⊆  is a set demotes the initial state; 
• G S⊆  is a set denotes the goal state.  

To further depict the planning domain and planning 
problem, the Planning Domain Definition Language 
(PDDL) [8] is employed. Some sample actions are shown 
below, representing the moving capability of the mobile 
robot and the grasping capability of a robot arm.  

(:action drive 
 :parameters (?r - mobile ?start - place ?dist - place) 
 :precondition (and (at ?r ?start) (can-locate ?r)) 
 :effect (and (at ?r ?dist) (not (at ?r ?start)))) 
(:action pickup 
 :parameters (?a - arm ?o - object ?p - plane) 
 :precondition (and (beside ?a ?p) (on ?o ?p)) 
 :effect (and (in ?o ?a) (not (on ?o ?p)))) 
(:action putdown 
 :parameters (?a - arm ?o - object ?p - plane) 
 :precondition (and (beside ?a ?p) (in ?o ?a)) 
 :effect (and (on ?o ?p) (not (in ?o ?a)))) 

B. Task Planning 
Inspired by International Planning Competition (IPC), 

the automated planning technology has been significantly 
improved these years. The increase was mainly due to 
three fundamental approaches, which are the Graphplan 
approach [9], satisfiability method [10] and heuristic 
search method [11]. The last one shows a better 
performance in recent years.  

This paper employs the heuristic search based 
algorithm to solve the planning problem we defined above, 
referring to the Fast Downward (FD) planner [12]. The 
PDDL files are translated to build a search space, which 
can be seen as a directed graph, where the nodes denote the 
states of the system, and the links denote the actions that 
make the system transfer from one state to another. FD 
searches the shortest path that starts from the initial state 
and reaches the goal state. The links on the path compose 
an action sequence, which is the planning solution. We 
improve the FD planner by adapting it to the online 
planning system. The detailed algorithm is shown below.  

Algorithm 1: Task planning 
while exists task T uncompleted:  

for each alive component iC :  
                readState( )i is C←  
                if is  is ERROR_STATE: reset( iC ) endif 
        endfor 
       0 1analyzeState( , , )initS s s←  
       analyzeTask( )goalS T←  
       taskModelPDDL( , )task init goalP S S←  
       FDplanner( , )result task domainT P P←  
       for each sub-task it  in resultT : 
               while( execute( )i ir t←  not complete) endwhile 
               if ir  is SUCCESS: continue 
               else:  break with failure  
               endif 
       endfor 
      if not failure: mark T as completed 

C. Combining middleware and task planner 
As Fig. 1 illustrates, the service layer and the device 

layer communicate through 3 kinds of service ports, 
namely FuncGet, FuncSet and ExeStatusGet. The Device 
Manager is developed as the bridge between these two 
layers.  

Firstly, the FuncGet service ports are used by 
readState(Ci) function with respect to Algorithm 1. Each 
component Ci provides the functionality of reporting its 
own states. For instance, the object recognition component 
reports the name of objects that are currently in its view. 
All these states are translated by the Device Manager, and 
then form the initial state fed to the task planner.  

Secondly, the planning result is in the form of action 
sequences, such as (drive robo1 door2 table1), (pickup 
arm0 coke table1), etc. Notice that the first item is the 
action name, and the second item is configured as the 
component name, of whom is in charge of this action. 
Device Manger compiles each action into a method-call 
through associated FuncSet service port. For example, the 
above two actions are compiled as 
robo1.move_to(table1_x, table1_y) and 
arm0.pickup(coke_id) respectively. These methods are 
defined in an interface definition language (IDL) file for 
each service port. One action is bound to one method of 
the service port. The action could also be bound to the 
connection or disconnection of two data ports. For 
example the action (localized-by robo1 cam1) means 
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connecting the data out-port of the camera component and 
data in-port of the robot component. 

Thirdly, when executing each action, it is important to 
monitor its status. If it’s successful, it will move on to the 
next action, while if it’s failing, it will start that over again. 
The ExeStatusGet service ports are responsible for 
reporting the execution status. There are 4 types of status, 
namely idle, running, success and failure.  

Two major benefits of this approach are that it allows 
an easy extension with new components and allows an 
easy transition to new task domains. Adding new 
components has few side effects on the existing ones and 
the planning module. All that we need to take care is to 
define the three kinds of service ports or other necessary 
data ports. Besides, same set of components can be used 
for different task domains, as long as the PDDL files are 
provided.  

V. SCNARIOS SHOWN IN THE VIDEO 
In the video, there are two task domains. One is the 

localization domain, and the other one is the robopub 
domain.  

In the localization scenario, one mobile robot is 
moving around in the environment with the localization 
info provided by three environmental cameras. The mobile 
robot and three cameras are in the form of components 
implemented with service and data ports. The working area 
of each camera is depicted in a domain definition file.  

The system receives user commands of destinations via 
a web interface. Then the planner works out the plans and 
sends them to the components. In this scenario, the camera 
switching process is automatically performed, promised by 
the cooperation of the device layer and service layer. 
Besides, it is quite convenient to add new localization 
components. In our previous work, three kinds of 
localization components, which are based on laser, camera, 
RGB-D sensors respectively, have been developed for 
robot localization [13].  

The second scenario is in a pub, where customers can 
order drinks.  This task comprises many technologies, such 
as object recognition, motion planning, localization, path 
planning, object avoiding, voice recognition, etc. A 
number of components were employed for this scenario. 
There are four environmental cameras, one mobile table 
with laser sensor and one robot arm. Software components 
are also implemented, including object recognition, path 
planning, etc. In this scenario, a humanoid robot works as 
the human-system interface. Compared to the monolithic 
service robot, our system is more efficient and robust.  

This scenario is an upgrade version of the first scenario. 
They are under the same framework and use same piece of 
planning code. The camera components and the mobile 
robot components from the first scenario are reused. And 
no modification is needed when deploying them to the 
second one. All that is needed is adding some new 
components, and upgrading the domain description file. 
The components and the planning module are reusable for 
different domains.   

VI. SUMMARY AND FUTURE WORK 
This paper has proposed a framework of ISURE, 

aiming at providing services to common day-to-day 
deployment scenarios. The middleware-based device layer 
and the service layer with a general purpose task planning 
module have been discussed in detail. The experiments 
signified that this framework significantly improves the 
system’s expandability and reusability.   

The framework is able to be enhanced with new 
technologies, such as other task planning approaches and 
other human-system interaction methods. We have been 
working on task planning algorithm with probabilistic 
feature. And advanced knowledge sharing algorithms are 
under investigation for the better automation and higher 
intelligence. 

VIDEO LINK 
The video can be viewed at the following link: 
http://youtu.be/fXLKMSKQKYs 
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