
A framework for Intelligent Service Environments based on Middleware and
General Purpose Task Planner

Wenshan Wang, Qixin Cao, Xiaoxiao Zhu, Shuang Liang
Research Institute of Robotics
Shanghai Jiao Tong University

Shanghai, China
amigo@sjtu.edu.cn

Abstract—Aiming at providing various services for daily
living, a framework of Intelligent Service Environment of
Ubiquitous Robotics (ISEUR) is presented. This framework
mainly addresses two important issues. First, it builds
standardized component models for heterogeneous sensing
and acting devices based on the middleware technology.
Second, it implements a general purpose task planner, which
coordinates associated components to achieve various tasks.
The video demonstrates how these two functionalities are
combined together in order to provide services in intelligent
environments. Two different tasks, a localization task and a
robopub task, are implemented to show the feasibility,
efficiency and expandability of the system.

Keywords—intelligent service environment; middleware;
task planning;

I. INTRODUCTION
Aiming at providing various services for daily living,

there are increasing efforts on combining the robotic
research with the ambient intelligence research. One
consequent field is the ubiquitous robotics [1][2]. In
ubiquitous robotic systems, sensors and actuators are
distributed as equivalent modules in the environments,
where these modules are able to communicate and
cooperate with each other through the network. Compared
to the traditional monolithic robot, the ubiquitous sensing
and acting network enables the system to complete more
complex service tasks, as well as decreases the
development expense.

In the video, we demonstrate a system, taking
advantages of heterogeneous networked sensors and
actuators in the environment, and providing services
following user’s commands. This system is based on
ISEUR framework. One of the most notable features of
this framework is that it combines Robot Technology
Middleware (RTM) with a general purpose task planner.
Not only does the middleware enable the communication
and interoperation between each pair of the devices, but it
also provides standardized interfaces to the up-level
planner, which is able to resolve various tasks in different
domains. The video demonstrates this system with two
different domains, the localization domain and the robopub
domain. It is shown that this framework enables easy
extension of new devices as well as the easy transition to
new task domains.

II. SYSTEM OVERVIEW
The ISEUR framework mainly addresses two issues.

First, the distributed robotic devices may be highly
heterogeneous both with regard to hardware platform and
software implementation. It is infeasible for these devices
to communicate and collaborate with each other. As a
result, the first problem is how to integrate these large
amounts of heterogeneous devices and allow painless
modification, expansion and deletion. Besides, there are a
variety of tasks and different situations for each task in the
day-to-day service scenarios. Users’ commands are usually
vague and complex, such as ‘give me a cup of water’,
‘clean the room’, etc., which need further decomposition
and organization before being understood and executed by
the system. So the second problem is how to plan on these
complex problems in optimization of time and resource
consumption.

Fig. 1. The system framework of ISURE

According to these issues, the proposed framework is
composed of three layers. They are the device layer, the
service layer and the application layer, as Fig. 1 shows.

In the device layer, a middleware technology is
introduced into the system. It encapsulates heterogeneous
robotic devices into uniform standardized components.
The components communicate with each other through

This research has been supported by Yaskawa Electric Corporation,
and the National High Technology Research and Development Program
of China (No. 2012AA041403, No.2012AA041401).

2015 International Conference on Intelligent Environments

978-1-4673-6654-0/15 $31.00 © 2015 IEEE

DOI 10.1109/IE.2015.40

184

2015 International Conference on Intelligent Environments

978-1-4673-6654-0/15 $31.00 © 2015 IEEE

DOI 10.1109/IE.2015.40

184

2015 International Conference on Intelligent Environments

978-1-4673-6654-0/15 $31.00 © 2015 IEEE

DOI 10.1109/IE.2015.40

184

uniform standardized ports. This also brings benefits to the
easy modification of existing devices and the expansion of
new ones. It will be detailed in Section 3.

The service layer contains a device manager and a
general purpose task planner. Device manager is
responsible for transferring up-level tasks and monitoring
low-level status. The task planner turns users’ abstract
commands into sub-task sequences, which can be directly
carried out by corresponding components. We will further
describe this in Section 4.

The application layer provides the interaction between
human and the ISURE system. Two kinds of user
interfaces are implemented. One is a web interface that can
be accessed from remote computers or mobile phones. The
other is a humanoid robot that acts as a communication
interface with both vocal and body languages.

III. MIDDLEWARE-BASED DEVICE LAYER
As mentioned above, the distributed devices are highly

heterogeneous with respect to platforms such as operating
system, programming language and communication media.
Thus the middleware is employed to generalize the devices
into uniform standardized components, which enables the
dynamic communication and cooperation between any two
of the modules. Fig. 2 explains how the middleware
transparentizes the hardware and software platforms, and
offers standardized access to the robotic devices.

Fig. 2. Conceptual Model of Middleware

Many research efforts have been expended on the
middleware technology for heterogeneous robotics system
[3], such as Player [4], Lime [5], Miro [6], RTM [7] and
etc. We argue that the middleware technology needs to
have the capacity to provide not only the communication
model but also the interfaces for managing component
states. With this in mind, a distributed localization system
using RTM is proposed. We implement our system based
on RTM owing to its two functionalities.

• The Data Ports and Service Ports for data exchange
and service invoking.

• Component execution context for lifecycle
management.

The ports are categorized into data ports and service
ports. The data port is responsible for the continuous
exchange of data, while the service port provides the
command based communication. Each component can
have any number of data InPorts and OutPorts. A data
OutPort sends the data to a corresponding InPort which
receives the data. The component with a service port,
offering a set of services, listens for requests upon those
services via a connector. Fig. 3 depicts the simplified UML
model of the RT-component.

Fig. 3. Simplified UML component model

Based on that component model, Fig. 4 illustrates some
of the components in our system. Each component is
responsible for some specific functionality. For instance,
the environmental camera is responsible for robot
localization and object recognition tasks; the mobile table
is in charge of transportation. Furthermore, the
decentralized modules are able to collaborate through
flexible combination, which increases the reusability of the
components. For example, the environmental camera can
provide localization information for multiple robots; the
path planning module can also serve for multiple mobile
platforms.

Fig. 4. Some of the components for the experiments of this study.
The distributed components are in the uniformed structure using
middlware technology.

Each component has three service ports, namely
FuncGet, FuncSet and ExeStatusGet. These service ports
are responsible for the interaction with the upper layer.
FuncGet port reports to the service layer about the
components’ state. For example, the environmental camera
provides the index of current robots within the field of
vision; the mobile table feeds back its coordinates, etc.
FuncSet port provides the functionality invoking, such as
setting the target location for the mobile table, setting the
localizing target for the environmental camera, etc.
ExeStatusGet port returns the execution status, such as
whether the mobile table has reached its destination, or
whether the environmental camera is locking on its target.

The data ports allow the communication and
cooperation between components. For instance, the
localization information is transferred from the data out-
port of environmental camera to the data in-port of the path
planning component. Once two data ports are connected,

185185185

those two components are able to perform real time
communication to accomplish the task collaboratively.

IV. TASK PLANNING MODULE IN THE SERVICE LAYER
The task planning module is a crucial part in the

service layer. In ISURE, the tasks are complicated and the
situations are dynamic. It is unlikely to predefine all the
possible states. As a result, a flexible and robust planning
method is needed. What’s more, it is supposed to be a
domain-independent general approach for solving a variety
of problems.

A. Task Modeling
Task modeling is the precondition of the task planning.

The quality of the planning result greatly depends on the
expressivity of the task model. On the other hand, the more
complicated of the model, the more difficult for the
planner to solve the problem.

This paper follows the techniques in automated
planning field. The Task planning problem is modeled as a
state transition system. Formally, it is modeled as a five-
tuple (, , , ,)S A c I G∏ = , where:

• 1 2{ , , }S s s= is a finite set of world states;
• 1 2{ , , }A a a= is a finite set of actions, each a A∈

is a triple (, ,)a a aname pre eff referred to the
action’s name, parameters, precondition and
effects respectively. The action’s name includes
the parameters associated with the action.

• 0:c A + is the cost function;
• I S⊆ is a set demotes the initial state;
• G S⊆ is a set denotes the goal state.

To further depict the planning domain and planning
problem, the Planning Domain Definition Language
(PDDL) [8] is employed. Some sample actions are shown
below, representing the moving capability of the mobile
robot and the grasping capability of a robot arm.

(:action drive
 :parameters (?r - mobile ?start - place ?dist - place)
 :precondition (and (at ?r ?start) (can-locate ?r))
 :effect (and (at ?r ?dist) (not (at ?r ?start))))
(:action pickup
 :parameters (?a - arm ?o - object ?p - plane)
 :precondition (and (beside ?a ?p) (on ?o ?p))
 :effect (and (in ?o ?a) (not (on ?o ?p))))
(:action putdown
 :parameters (?a - arm ?o - object ?p - plane)
 :precondition (and (beside ?a ?p) (in ?o ?a))
 :effect (and (on ?o ?p) (not (in ?o ?a))))

B. Task Planning
Inspired by International Planning Competition (IPC),

the automated planning technology has been significantly
improved these years. The increase was mainly due to
three fundamental approaches, which are the Graphplan
approach [9], satisfiability method [10] and heuristic
search method [11]. The last one shows a better
performance in recent years.

This paper employs the heuristic search based
algorithm to solve the planning problem we defined above,
referring to the Fast Downward (FD) planner [12]. The
PDDL files are translated to build a search space, which
can be seen as a directed graph, where the nodes denote the
states of the system, and the links denote the actions that
make the system transfer from one state to another. FD
searches the shortest path that starts from the initial state
and reaches the goal state. The links on the path compose
an action sequence, which is the planning solution. We
improve the FD planner by adapting it to the online
planning system. The detailed algorithm is shown below.

Algorithm 1: Task planning
while exists task T uncompleted:

for each alive component iC :
 readState()i is C←
 if is is ERROR_STATE: reset(iC) endif
 endfor
 0 1analyzeState(, ,)initS s s←
 analyzeTask()goalS T←
 taskModelPDDL(,)task init goalP S S←
 FDplanner(,)result task domainT P P←
 for each sub-task it in resultT :
 while(execute()i ir t← not complete) endwhile
 if ir is SUCCESS: continue
 else: break with failure
 endif
 endfor
 if not failure: mark T as completed

C. Combining middleware and task planner
As Fig. 1 illustrates, the service layer and the device

layer communicate through 3 kinds of service ports,
namely FuncGet, FuncSet and ExeStatusGet. The Device
Manager is developed as the bridge between these two
layers.

Firstly, the FuncGet service ports are used by
readState(Ci) function with respect to Algorithm 1. Each
component Ci provides the functionality of reporting its
own states. For instance, the object recognition component
reports the name of objects that are currently in its view.
All these states are translated by the Device Manager, and
then form the initial state fed to the task planner.

Secondly, the planning result is in the form of action
sequences, such as (drive robo1 door2 table1), (pickup
arm0 coke table1), etc. Notice that the first item is the
action name, and the second item is configured as the
component name, of whom is in charge of this action.
Device Manger compiles each action into a method-call
through associated FuncSet service port. For example, the
above two actions are compiled as
robo1.move_to(table1_x, table1_y) and
arm0.pickup(coke_id) respectively. These methods are
defined in an interface definition language (IDL) file for
each service port. One action is bound to one method of
the service port. The action could also be bound to the
connection or disconnection of two data ports. For
example the action (localized-by robo1 cam1) means

186186186

connecting the data out-port of the camera component and
data in-port of the robot component.

Thirdly, when executing each action, it is important to
monitor its status. If it’s successful, it will move on to the
next action, while if it’s failing, it will start that over again.
The ExeStatusGet service ports are responsible for
reporting the execution status. There are 4 types of status,
namely idle, running, success and failure.

Two major benefits of this approach are that it allows
an easy extension with new components and allows an
easy transition to new task domains. Adding new
components has few side effects on the existing ones and
the planning module. All that we need to take care is to
define the three kinds of service ports or other necessary
data ports. Besides, same set of components can be used
for different task domains, as long as the PDDL files are
provided.

V. SCNARIOS SHOWN IN THE VIDEO
In the video, there are two task domains. One is the

localization domain, and the other one is the robopub
domain.

In the localization scenario, one mobile robot is
moving around in the environment with the localization
info provided by three environmental cameras. The mobile
robot and three cameras are in the form of components
implemented with service and data ports. The working area
of each camera is depicted in a domain definition file.

The system receives user commands of destinations via
a web interface. Then the planner works out the plans and
sends them to the components. In this scenario, the camera
switching process is automatically performed, promised by
the cooperation of the device layer and service layer.
Besides, it is quite convenient to add new localization
components. In our previous work, three kinds of
localization components, which are based on laser, camera,
RGB-D sensors respectively, have been developed for
robot localization [13].

The second scenario is in a pub, where customers can
order drinks. This task comprises many technologies, such
as object recognition, motion planning, localization, path
planning, object avoiding, voice recognition, etc. A
number of components were employed for this scenario.
There are four environmental cameras, one mobile table
with laser sensor and one robot arm. Software components
are also implemented, including object recognition, path
planning, etc. In this scenario, a humanoid robot works as
the human-system interface. Compared to the monolithic
service robot, our system is more efficient and robust.

This scenario is an upgrade version of the first scenario.
They are under the same framework and use same piece of
planning code. The camera components and the mobile
robot components from the first scenario are reused. And
no modification is needed when deploying them to the
second one. All that is needed is adding some new
components, and upgrading the domain description file.
The components and the planning module are reusable for
different domains.

VI. SUMMARY AND FUTURE WORK
This paper has proposed a framework of ISURE,

aiming at providing services to common day-to-day
deployment scenarios. The middleware-based device layer
and the service layer with a general purpose task planning
module have been discussed in detail. The experiments
signified that this framework significantly improves the
system’s expandability and reusability.

The framework is able to be enhanced with new
technologies, such as other task planning approaches and
other human-system interaction methods. We have been
working on task planning algorithm with probabilistic
feature. And advanced knowledge sharing algorithms are
under investigation for the better automation and higher
intelligence.

VIDEO LINK
The video can be viewed at the following link:
http://youtu.be/fXLKMSKQKYs

ACKNOWLEDGMENT
This research has been supported by Yaskawa Electric

Corporation.

REFERENCES
[1] A. Saffiotti, et al., "The PEIS Ecology project: vision and results,"

Proc. of the IEEE/RSJ Int Conf on Intelligent Robots and Systems
(IROS), 2008.

[2] G. Amato, et al., "Robotic ubiquitous cognitive network," in
Ambient Intelligence-Software and Applications, ed: Springer,
2012, pp. 191-195.

[3] N. Mohamed, J. Al-Jaroodi, and I. Jawhar, "A review of
middleware for networked robots", International Journal of
Computer Science and Network Security, Vol.9 No.5, pp. 139-148.

[4] T.H.J. Collett, B.A. MacDonald, and Gerkey, B.P. "Player 2.0:
Toward a practical robot programming framework", In Proc.
ACRA, 2005.

[5] A.L. Murphy, G.P. Picco, and G.-C. Roman, "LIME: A
coordination model and middleware supporting mobility of hosts
and agents", ACM TOSEM, Vol.15 No.3, pp. 279-328.

[6] H. Utz, S. Sablatnog, S. Enderle, and G. Kraetzschmar, "Miro-
middleware for mobile robot applications", IEEE Transactions on
Robotics and Automation, Vol.18 No.4, pp. 493-497.

[7] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W.-K. Yoon,
"RT-middleware: distributed component middleware for RT (robot
technology)", 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 3933-3938.

[8] D. McDermott, “PDDL–the planning domain definition language,”
the AIPS’98 Planning Competition Committee, 1998.

[9] A. L. Blum, M. L. Furst, “Fast planning through planning graph
analysis,” Artificial Intelligence, 2005, pp.279-298.

[10] H. A. Kautz, B. Selman, “Pushing the envelope: Planning,
propositional logic, and stochastic search,” In Proc. AAAI-96, pp.
1194-1201.

[11] B. Bonet, H. Geffner, “Planning as heuristic search,” Artificial
Intelligence, 2001.

[12] M. Helmert, “The Fast Downward Planning System,” Journal of
Artificial Intelligence Research, 2006, pp.191-246.

[13] W. Wang, et al., “An automatic switching approach of robotic
components for improving robot localization reliability in
complicated environment”, Industrial Robot: An International
Journal, Vol. 41 No.2, pp. 135-144, 2014.

187187187

